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Summary. An analytical formula has been derived for averaging the differential 
cross section for electron scattering with respect to isotropic target molecule 
orientation. It may be applied to any type of T-matrix element {k°Ut] T Ik ~n) in 
which the plane-wave functions k °ut and k in are expanded in a set of s-type 
Gaussian functions. The formula for averaging was tested against results obtained 
by Monte-Carlo-type calculations and against experimental data for elastic elec- 
tron scattering by the H2 molecule. 
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aging. 

1 Introduction 

In earlier papers of this series [1-3], hereafter referred to as Parts I-III,  we have 
developed a special type of Gaussian basis sets for use in elastic and inelastic 
electron scattering calculations. We call them cubic-grid Gaussian basis sets 
because they are formed by primitive s-type Gaussians distributed at cubic lattice 
points within a sphere. So far we have only used them in context of the T-matrix 
expansion method [4], but there is every reason to believe that it also will be 
profitable to use them in more sophisticated calculations. In Part I [1] we 
optimized the cubic-grid basis set for the best representation of the plane-wave and 
Green functions. The necessary formulas for the matrix elements of the Green 
function and the interaction potential between the scattering electron and the 
target molecule were derived in Part  II [2]. In Part III [3] we tested the response of 
the calculated cross section to the choice of the sphere size, i.e., to the size of the 
cubic-grid basis set, and to translation of the target molecule within the sphere, and 
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we described an approximate correction for contributions from the part of space 
that lies outside the sphere. 

Our next intended step is to apply this approach to molecules. However, for 
comparison of calculated cross sections with experimental gas-phase data we have 
to average the calculated cross section over the isotropic orientation of the target 
molecule with respect to the directions of the incoming and scattered electron. 
Derivation of a formula for the averaged differential cross section is the subject of 
this paper. We also report two refinements of the computational scheme described 
in Parts I-III: (i) we recognize the energy dependence of the constants C1 and C2 
needed in the evaluation of the matrix elements of the Green function, and (ii) we 
include the second-order polarization effect by the method of Klonover and 
Kaldor [-5]. 

2 Theory 

Our task is to express an average value of the differential cross section for fixed 
energies of the incoming and outgoing electrons represented by plane-wave func- 
tions ]k in) and Ik °ut) and a fixed scattering angle m between k in and k °ut 

I da 
do" ~-~ ((,o, k °ut, ]gin, ~)  d~ 

dO (co, k °ut, k in) --"  , (1) 

fd- 
where ff is a collective symbol for coordinates defining the orientation of a target 
molecule with respect to the scattering electron. For  unnormalized plane-wave 
functions the differential cross section is given as 

da 1 k °ut 
dO - 16re 2 k in (k°Ut] T Ik in) (kinl T Ik°~t), (2) 

where ]gin and /gout are absolute values of k ~n and k °ut. Upon expanding the 
unnormalized plane-wave function in a cubic-grid Gaussian basis set [2] 

]k) = F(k, kg) 2 [ Si) (Silk) (3) 
i 

we can rewrite the T-matrix element as 

(k°utl T [k in) -- F(k °nt, kg)e(k in, kg)~  (k°Ut[si)(siiT [sj)(sjIki"). (4) 
i , j  

To avoid unnecessary repetition of our derivation from Part  I [1] we only note that 
F(k, kg) is a "correction" factor 

2-3/2 k 2 

D = l + 4 e x p  - - i 2  + 4 e x p  -- (5) 

and sl are s-type primitive Gaussians with an exponent e = k2/3 distributed in 
a regular cubic lattice within a sphere. The constant kg is also used for the definition 
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of the grid, rc/2kg. Substitution for the expansion coefficients in Eq. (4) 

(k°ut) 2 
~ -  ] exp( - ik°Ut_.4i) (6) 

(k in )2~  
~ -  / exp(ikinAj) (7) 

leads to the following expression for the T-matrix elements: 

(k °ut ] T [k in) = AT(k °ut, k in) 2 T~j exp( - ik°UtAi + ikinA~), (8) 
i , j  

(kinl T Ik °ut) = AT(k in, k °ut) ~ T*. exp( + ik°UtAm - -  ikinAn). (9) 
m,n 

Here A~ are position vectors of the cubic-grid Gaussian functions, T;j and Tin. are 
the T-matrix elements in the cubic-grid basis set, and AT is a constant defined by 

for arbitrary Ka and ~c2. Using the expressions (8) and (9) we may rewrite the 
differential cross section as 

da 
- -  = T U T rnnlijmn , dO Aocs ~, * (11) 

i , j ,  ra,n 

where Aocs is a constant for specified values of the input parameters k in, k °"t, and kg 

A2(k  in, k °ut) k out 
Aocs -- 16~2 ki" . (12) 

In expression (11) the only quantity that depends on the directions ofU" and k °ut is 

Ii~,.. = exp[i(k~'~Bj~ + k°UtBmi)] (13) 

in which Bj. = Aj - A .  and Bmi = A m - A ~ .  Averaging of the differential cross 
section (11) for a statistical ensemble of randomly oriented molecules is equivalent 
to integration over all possible orientations of k ~" and k °ut in Eq. (13) under the 
boundary conditions of fixed k in, k °ut and the angle co between k in and k °ut. This 
average value can be expressed analytically as follows: 

K~ K2 K3 
~jmn = Z Z Z Ak,k~k~(aim)2k~(bijran)2k~(Cijmn) 2k~' (14) 

k~.=O k2=O k3 =0 

where 

Aklk2k 3 = 2 ( - - 1 ) k l + k 2 + k ~ ( k l  + k2)!(kl  -}- k2 q- k3 -t-- 1)! 
(k~!)2(k2!)2k3!(2(kl + k2 + k3 + 1))! 

and aim, big,~., and cij,., are constants defined by 

aim = k°UtBmi sin co, 

bum n = kinBjn sin Z~,,,.i, 

ci:mn = kinBj,, COS Zj,,mi + k°UtB,,,i COS co. 

(15) 

(16) 

(17) 

(18) 
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The quantity )~j,,,~ in Eqs. (17) and (18) is the angle between the vectors B~, and B~. 
The summation limits K,,  K2, and K3 are defined in the next section. The 
analytical formula (14) for a general function f = exp[i(k~A + k~B)l is derived in 
the Appendix for arbitrary vectors A, B, k", and k b. 

Averaging becomes somewhat more complicated if we include long-range 
interactions from the part of the space that lies outside the volume that contains 
the cubic-grid basis set. As derived in Part III [3], the T-matrix element (4) then 
contains two additional terms 

4~ 
<k°~*[ T Ik in) = FoutFi~ ~ (k°Utls,><s, lT - U=lsj><sjlki~> + - A T ~ Z g f e  ~eg~, (19) 

i,j ~. C 

where 

O = k in - -  k °u'. (20)  

The U,-matrix elements are given [-3] by 

(s~lUsls j )  =2  s~ ~l;--R~cl sj . (21) 

The summation index C runs over the atoms of the target molecule and Z} ff are 
their effective atomic charges chosen so as to reproduce the long-range electrostatic 
potential generated by the molecule. On substituting into Eq. (2) from Eq. (19) we 
obtain 

da 
dO 16rc2 ]gin A 2  Z (T Us)ij(T * 

i,j,m,n 

4~ 
+ ~ AT 2 Z ~ f f [ (  T - -  Us)ij "~ ( r  -- Us)i*]Iijcc 

i,j,c 

16n:2 v 7eff7effr ~. (22) 
d - ~  Z.., L'C L'D ICCDD(" 

C,~ J 

As in expansion (11), the only quantities that depend on the directions of k in and 
k °ut are the I terms, and these can be averaged by use of Eq. (14). 

3 Expression of Bessel functions by finite power series in the average value formula 

Three summations over the indices kl, k2, and k 3 in expression (14) originate from 
an approximation of the Bessel functions by a finite power series, namely of two 
Bessel functions of the zeroth order in Eq.(A.14) and one Bessel function 
Jk, +k~+ 1/2 in Eq. (A.18). We show in this paragraph how to determine the numbers 
K1, K2, and K3 of terms in the respective power series that have to be taken into 
account in order to evaluate the integral (14) with an accuracy of 10-8. 

Let us start with the function Jo(x). As depicted in Fig. 1, the quality of the 
power series approximation improves with the increasing value of the summation 
limit (K1 or K2). Thus, the higher are the values of an argument x (which is aim or 
bijm, in our case), the higher are the summation limits K1 and K2 that have to be 
used. As is seen in Fig. 2, the dependence of the adequate summation limit K t and 
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Jo(x) ~ ~ ~  
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Fig. 1. Approximation of the Bessel function 
Jo(x) ( ) by the finite power series (B.3) 
( ..... ) for different values of the summation 
limit K; (1) K = 2, (2) K = 5, (3) K = 10 

K 
25 0/f 
15 

10 

5 

0 
2 4 6 8 10 12 14 16 

Xmax 

Fig. 2. The summation limit K for an approximation of 
the Bessel function Jo(x) by the finite power series (B.3) 
with an accuracy of 0.001 for x ranging from 0 to Xmax 

K 2 o n  the argument x is linear. This dependence is used in our computer program 
for the estimation K1 and K 2 for any set of indices i, j, m, and n. 

For  the Bessel functions Jk, +ks+ 1/2(x), the summation limit K3 is fixed so as to 
be applicable also to the Bessel functions J,,+i/2(x) with m = 0, 1 . . . .  , K1 + K2, 
giving a good approximation to all these functions by the truncated power series. 
The values of K3 for several half-numbered Bessel functions are summarized in 
Table 1. The systematic decrease of K3 with the increasing order of the Bessel 
function shows that it can always be assigned a value that is sufficient for Jo(x). 

We tested the formula (14) against results of Monte-Carlo-type calculations. 
Let the vectors k in and k °ut be defined by the Euler angles e,/~, and 7- Then for a set 
of fixed parameters A, B, k a, k b, o~, and Z (see the Appendix) the statistical average 
value of the function f = exp [i(MA + kbB)] may be obtained as 

N 

L, = i= 1 (23) 
N 
Y, p~ 

i=l 

where the Euler angles ~,/3~, and 7~ are randomly generated in the ranges (0, 2re), 
(0, re), and (0, 2TO), respectively, and 

Pl = sin fii (24) 

is a statistical weight needed for a uniform coverage of the integration sphere by 
randomly generated pairs of k vectors. The physical significance of the number of 
calls of the generator, N, is the number  of random orientations of a molecule or, 
equivalently, the number  of randomly oriented molecules. We tested the formula 
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Table 1. Values of the constants Kx and Kz for the Bessel function Jo(x), and K3 for the Bessel function 
J~+ 1/2(x) 

Parameter  Summat ion  limits a K1, Kz, and K3 
and function 

Xma x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Jo(X) 3 5 6 7 9 10 11 12 14 15 17 18 19 21 22 
J1/2(x) 3 4 6 7 8 10 11 12 14 15 16 18 19 20 22 
J3/2(x) 2 4 5 7 8 9 11 12 13 14 16 17 18 20 21 
Js/2(x) 2 3 5 6 7 9 10 11 13 14 15 17 18 19 21 
JT/2(x) 2 3 4 5 7 8 9 11 12 13 15 16 17 19 20 
J9/2(x) 2 2 3 5 6 7 9 10 11 13 14 15 16 18 19 

a For the tabulated K1, K2, and K3 values, the Bessel functions are evaluated with an accuracy of 0.001 
for x in the range (0, Xmax). Note that K3 is always smaller than or equal to KI and Kz 

1 

0 ,15  

0 .10  

0 . 0 5  

0 .00  
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- 0 . 1 0  
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Fig. 3. The angular dependence of the average 
value of the function f calculated analytically 
according to Eq. (A.20) (full line) and statistically 
according to Eq. (23) (open circles) for scattering 
angles co = 0°(1), co = 90°(2), and o) = 180°(3), 
with the parameters A = 3, B = 5, k" = 0.7 and 
k b = 1.7. The number  of Monte-Carlo steps was 
107 - - j  

20 g'o e'o go 1do 1~o 14o ~o 18o 

x(deg) 

(14), expressed as Eq. (A.20), for different values of input parameters and found 
excellent agreement. An example is shown in Fig. 3. 

4 Elastic electron scattering by isotropic H2 

To test our formula for the average value of the differential cross section [Eq. (11)], 
we performed calculations on elastic scattering of electrons by the H2 molecule and 
compared the calculated differential cross sections with experimental data. We 
selected an electron energy of 10 eV because we anticipate that it will be a typical 
value in our future calculations, the primary aim of which will be the interpretation 
of vibrational EELS. 

Upon examination of the published data [6-8]  it seems to us that the most 
reliable differential cross sections for elastic electron scattering by H2 at 10 eV are 
the data by Srivastava et al. [7], renormalized by Trajmar et al. [8]. In Fig. 4 we 
plot these data along with the results of our calculations. We tried several 
cubic-grid basis sets of different sizes and found that the results were converged for 
the 11 x 11 x 11 basis set. For  the H2 molecule we used either Sadlej's [3slp] basis 
set [9] which was especially developed for SCF calculations of electric properties of 
molecules and should therefore be suitable for SCF calculations of the interaction 



Cubic-grid Gaussian basis sets 

8-  ,-;,, 
=. 

13 

Oc  
2'0 40 60 8'0 100 120 140 160 180 

m(deg) 

407 

Fig. 4. Differential cross section for elastic 
scattering of electrons by H2 (incident energy 
10.0 eV). Full circles denote experimental data by 
Srivastava et al. [7] renormalized by Trajmar et al. 
[8] and the three curves are results of our 
calculations: ([]) [3slpl and 11 x 11 x 11 cubic-grid 
Gaussian basis set without polarization effect, (©) 
[3slp] and 11 x 11 x 11 cubic-grid Gaussian basis 
set with polarization effect, (<>) (lOs5p)/[7s5p] and 
13 x 13 x 13 half-spaced. [1-3] cubic-grid Gaussian 
basis set with polarization effect 

potential between the target molecule and a scattering electron or Huzinaga's  
(lOs5p)/[7s5p] basis set [10]. The constants C1 and C2 for Green function matrix 
elements were obtained from Eqs. (C.1) and (C.2) in Appendix C, and the polariza- 
tion effect was included as described in Appendix D. Averaging was done by using 
Eqs. (11) and (14) and not Eq. (22), because we found that the results were already 
converged for the 11 x 11 x 11 basis set and it was therefore not necessary to correct 
for any longer-range contributions. 

Our  calculations do not agree with experiment as closely as the most sophisti- 
cated scattering calculations published up to now (cf. Gibson et al. [111 and 
references therein). It should be emphasized, however, that our primary aim was to 
test the formula for averaging and to see whether the dependence of the calculated 
differential cross section on the scattering angle is qualitatively correct. Calcu- 
lations of the present type are readily applicable to polyatomic molecules and we 
hope that they will provide results of the same accuracy as obtained for H2. 

The method requires additional testing, such as an examination of the effect of 
the basis set used for the target molecule, improved representation of the Green 
function by using the half-spaced cubic-grid basis set [11, and application to elastic 
and inelastic electron scattering by other diatomic molecules. Such calculations are 
in progress. 

Appendix 

A. Derivation of the average value of the function f 

Let A and B be two vectors of constant lengths A and B at a fixed angle Z. These 
vectors correspond to the "grid" vectors Bjn and Bm~ from Eq. (13) and they are fixed 
with respect to the molecule. The average value of the function 

.f = exp[i(MA + kbB)] (A.1) 

over all possible orientations of the molecule with respect to the fixed pair of 
vectors k" and k b may be evaluated by integration over orientations of the molecule 
and the pair of the A and B vectors. However, computationally it is preferable to 
keep the molecule and the vectors A and B fixed and to average over all possible 
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orientat ions of vectors k ~ and k b, keeping their lengths k ~ and k b and their mutual  
angle co constant.  

We choose a molecule-fixed (unprimed) Cartesian coordinate  system such that  
A = (0, Ay, A~) and B - (0, 0, B~). We define a rotat ing (primed) Cartesian coordi-  
nate system in which the Cartesian components  of the k ~ and k b vectors are fixed: 

k~' = O, k~' = k b sin co, 

k~' = 0, k~' = 0, 

k~' = k ~, k~' = k b cos co. (A.2) 

The orientat ion of the primed system with respect to the unpr imed system is 
described by the Euler angles e, fl, and 7. The relation between the coordinates  o fk  a 
and k b in the two coordinate  systems is [12, 13] 

where 

A = 

cos e cos fl cos 7 - sin e sin 

- cos c~ cos fi sin 7 - sin e cos 7 

cos ~ sin fi 

3 

k~ = • Aj~kf', (A.3) 
j = l  

sin c~ cos fi cos y + cos c~ sin 7 

- s i n e c o s f i  sin 7 + c o s e c o s 7  

sin ~ sin fl 

- sin fi cos 7' 

sin fi sin 7 

COS f i  

(A.4) 

We need the average value of f over all possible orientat ions of the primed coordi-  
nate system. The average value f i s  given by 

f =  S 2~ So S 2~ f ( e ,  fl, 7)sin f l d e d f l d  7 (A.5) 
2~ ~ 2~ • 

So IoSo s lnf ld~df ld~ 

In view of Eqs. (A.3) and (A.4) we m a y w r i t e  

k~ (fi, 7) = -- kb sin c° sin fi cos ~ + kb cos c° cos fi • (A.6) 

The expression (A.5) can be rewritten using Eqs. (A.1) and (A.6) as 

f =  ~ 2  de dfi s infiexp[i(ka(e,  f l)A + kbBcoso , ) cos f i ) ] ' I ( f l ) .  (A.7) 

The index y denotes the integration variable in the integral 

~I(fi) = dy exp( - i k b B  sin co sin fi cos 7). (A.8) 

This integral equals 2x multiplied by a Bessel function of the zeroth order  [cf. 
Eq. (B.1)l 

' I ( f l )  = 2~rJo(a sin fl), (A.9) 

where a = kbB sin co is a constant.  Then by using expressions (A.7) and (A.9), and 
relations 

k~(~, fi) = kasin fi sin~, (A.10a) 
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we may express f i n  the form 

ka3(~:)  = ]c a cos  fl, (A.10b)  

A2 = A sin Z, (A.10c) 

A3 = A cos Z (A.10d) 

f = ~  dflsinflexp[i(kaAcoszcosfl+kbBcoscocosfl)]Jo(asinfl)~I(fl), 

(A.11) 

where ~I(fl) represents the integral 

~l(fl) = de exp(ikaA sin Z sin fl sin c 0. (A.12) 

According to Eq. (B.2) this integral leads again to a Bessel function 

~I(fl) = 2rCJo(b sin fl) (A.13) 

with a constant b = kaA sin Z. If we next define a constant c = kaAcosz + 
kbB cos co, we get from Eqs. (A.11) and (A.13) 

f =  ~ dfl sin fl exp(ic cos fl)Jo(a sin fl)Jo(b sin fl). (A.14) 

The expansion of Bessel functions into the infinite power series (B.3) and neglect of 
terms with higher exponents permit us to approximate f b y  

1 /(1 K~ 
fc~g Z Z PkiQkflklk, (A.15) 

kz=O k z = O  

where the terms Pkl and Qk2 are 

- - ( ~ . ~  \ ~ j  , (A.16a) 

Qk~ -- (--1)k~ (~) 2k~ (A.16b) 

The integral in Eq. (A. 15) is 

fo ~Ik~k~ = dfl exp(ic cos fl)(sin fi)2~, (A.17) 

where v = k~ + k2 + 1/2/> 1/2. Since F(1/2) = ~, the use of Eq. (B.4) leads to 

PIk~k~ = ~ /~r (k~  + k~ + 1)Jk~+k~+l/2(C) . (A.18) 

Substituting for ~Ikl,k~ in Eq. (A.15) from Eq. (A.18) we obtain 

K~ K~ (__l)k~+k~F(ki + k2 + 1)Jk~+k~+i/2(C) (a)2k~(b)Zk~ 
f =  %/~ Z 2 (2c)k~+k~+i/2 . (a.19) kl=O k2=O (kt  !)2(k2 !) 2 
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Fig. 5. Two-dimensional plots of the funct ionf(a ,  b, c) for b = 0 (a) and c = 0 (b) 

Since the integral (B.4) does not depend on the sign of x we may write I c] instead of 
c in (A. 19). This is important because of the condition ] arg(z)] < ~ in the expression 
(B.5). We may now substitute the series (B.5) for Jk, +k2 + ~/2(C), replacing the infinite 
sum by a finite sum from 0 to K3. We then express the Gamma functions by means 
of expressions (B.6) and (B.7) and obtain the final formula 

K~ K2 K3 
f ~  E Z Z Aklk~k3,'a'2k"b'2k~'c t , , , , (1.20) 

k~=O k~=O k3 =0 

where 

Ak~k~k~ = 2 (-l)k~+k~+k~(k~ + k2)!(k~ + k2 + k3 + 1)! (A.21) 
(k~!)2(k2!)2k3!(2(k~ + k2 + k3 + 1))! 

l s  expec ted ,  f(a, b, c) is a dimensionless function, and it equals unity for 
a = b = c = 0. I t  conve rges  to  zero as the parameters a, b, a n d  c go  to  infinity 
(Fig.  5). 
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B. Formulas for the Bessel functions and Gamma function [14, 15] 

In all the equations below, v and x are real numbers, z is a complex number and n is 
a natural number. 

~ d~o exp(ix cos q0) = 2rCJo(X) (B.1) 

]~ d~o exp(ix sin (p) = 2~J0(x ) (B.2) 

~" ( -  1)k (2)2k (B.3) 
Jo(z) = k_a..o (k!) 2 

d~o exp( _+ix cos ~o)sin2"(~o) = ~,~ J~(x)F(v + ½) [Re(v + ½) > 0] 

Jr(z)= k=o~ k!F(vq-kq- 1 ) \ 2 J  ; 

(2n)! ~ 
F(n + ½) - 22.n ! 

F(n) = (n - 1)! 

[]arg(z)] < rc] 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

C. C1 and C 2 constants for the matrix elements of the Green function 

In Part I1 [-2] we derived the matrix elements of the Green function for the 
cubic-grid Gaussian basis sets. The expression for the real part of the Green 
function (see Eq. (20) in Part II) contains two adjustable constants C1 and C2. We 
obtained their optimum values by the fitting of the Green function in the Gaussian 
expansion to the exact Green function. We used an electron energy of 10 eV and 
used the resulting values of C~ and C2 also for other energies. In this paper we 
present a more refined treatment of C~ and C2, in which their dependence on 
energy is recognized. We optimized C1 and C2 for several energies in the range 
from 2 to 20eV by least-square fits of the Green function in the Gaussian 
expansion as described in Part II. The resulting energy dependence of C1 (E) and 
C2(E) was then expressed by the following polynomial fits: 

N1 

c1(~) = Y~ a°E", (c.1) 
n=O 

N2 

C2(E) = ~ b,E", (C.2) 
n = 0  

where E is the energy of the scattering electron in eV. The optimized parameters al 
and bi are summarized in Table 2. This table also contains the parameter values for 
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Table 2. Optimized parameters for the determination of constants CI(E) and C2(E) needed for the 
evaluation of Green function elements in the energy range from 2 to 20 eV 

n Regular basis set Half-spaced basis set 
a, b, a,, b,, 

0 0.344223000D+ 02 0.308130000D +01 0.604885000D +02 0.143650000D+ 01 
1 -0.621155694D+01 -0.378826789D+00 -0.125149381D+02 -0.119820531D+00 
2 0.152869898D+01 0.637297089D--01 0.301944669D +01 0.292256127D-01 
3 -0.260458686D + 00 - 0.672804942D--02 - 0.497446820D + 00 -0.515043756D-02 
4 0.290374359D-01 0.411456664D-03 0.534739810D--01 0.614699819D-03 
5 -0.207751391D-02 -0.133358373D-04 -0.368785680D-02 -0.479313470D-04 
6 0.916221469D-04 0.176866319D-06 0.156910775D-03 0.231997421D-05 
7 -0.226207345D-05 -0.374241819D-05 -0.628929957D-07 
8 0.238812159D-07 0.382196336D-07 0.726609004D- 09 

" See Eqs. (C.1) and (C.2), and Sect. 3 in Part II [2] 

the evaluat ion of the constants  used in con junc t ion  with the half-spaced cubic-grid 
basis sets (see Eqs. (23) and  (24) in Par t  II). 

D. Second-order polarization effect 

We used the procedure of Klonover  and  Ka ldor  [5], who included the sec- 
ond-order  polar izat ion con t r ibu t ion  in a way similar to that  used in molecular  
orbital  theory to correct the H a r t r e e - F o c k  potent ia l  for second-order  electron 
correlat ion effect. Hence the total  potent ia l  is given as 

V = Vsx + V ~2), (D.1) 

where Vsx is the static-exchange (Har t ree-Fock)  potent ia l  and V (2) is the sec- 
ond-order  term. In  the orbital  form the Klonover  and  Kaldor ' s  expression [16] 
may be rewritten as 

(c~ I r (2)1131 ) = ~ (jpli/3) [2 (jPli~) -- (ipljcO] 
i j p  8 "Jr- C,p - -  ~i - -  C,j 

_ ~ (qilp~)[2(qilp/3) -- (pi[q/3)] 

ipq 8 p  "Jr- ,~q - -  ,~ - -  ~i  
(D.2) 

We follow the original no ta t ion  [16] so that  :~ and fi mean  Gauss ians  from 
a cubic-grid basis set, p and  q are indices of occupied orbitals, i and  j are indices of 
unoccupied  orbitals, and e = (kln)2/2. Fo r  convenience of computer  p rogram cod- 
ing we use the (11/22) no ta t ion  for the two-electron integrals instead of (12] 12}. 
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